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Chapter 5
Dynamic Panel Model
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Objectives n

(1) Introduce about Dynamic Panel Model

(2) Fixed and Random Effects Estimation

(3) Instrumental Variable Estimation (IV approach) (Anderson and
Hsiao, 1982)

(4) 2SLS, Generalized Method of Moment (GMM) approach (Arenallo
and Bond, 1985)
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5.1 Introduction Eﬁ
Linear dynamic panel data models include lag dependent varia S
covariates along with the unobserved effects, fixed or random, and

€X0genous regressor

p p
Yii = Yo +Zyth—j +x,p+o; +uy = zyjyt—j +x,p+o; +u,  (5.1)
= =1

Notes: The presence of lagged dependent variable as a regressor
incorporates the entire history of it, and any impact of x; on Y, is
conditioned on this history.

We consider a dynamic panel model, in the sense that it contains (at

least) one lagged variables. For simplicity, let us consider

— b *
Mr U_KHOA TOAN KINH TE Yit = leit—1+B itXit _Hxi T Uiy (52)

6/6/2022



Yie = ViYier B X oy Ty (5.2) n
Eq. (5.2) requires that |y | <l

Yie = Vivietoy + W= Yo TV Vit oty (5.3)

Assumptions on random disturbance are the following:

About a.,
E(o,)=0, ,V(oci):E(ocf)zci, ,E(a,x,)=0, ,E(ociocj):O
About u

it?

E(u,)=0, ,V(uit):E(ui)zcs2 ,E(uitujs)zo for 1#) and t#s
E(uit /Yit—l):()

E(o,/y,,)#0
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By setting t = 1, 2,... and so on, the autoregressive process ne
expressed in the following way:

Yivey =Yoo TV Vio TQ; TU

Voo = VotV Tty =y 0+ 1 (Vo + 700+ ) T

=Yoo TV T & T}, +7/12yio TVU, TU,

............. )

V., =7, (1+7/1 +...+7/f‘1)+al. (1+7/1 +...+7/f‘1)+7/fyl.0 +Z;/{ul ~

Or "

-1 (-1 -1
_ J J t J
Vit _7/027/1 +aiZ7/1 +7/1yz'o+z7/1uzr—
=0 =0 =0

Therefore

-2
Vir 70271 +a, Z% Y+ D ViU
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For large t,

1 1
E yit/ai =7 T
( ) 01_7/1 1—y,
2
O
Viv. /o )= £
(ylt al) 1_7/12

5.2 Fixed and Random Effects Estimation

Yie=Yo T V1Yi T 4wy (5.3)
Remark: One possible cause for biasedness is the presence of the
unknown individual effects o, which creates a correlation between the

explanatory variables and the residuals
(yit _yi) =7 (yit—l _yi,—1)+uir — Ui
Notes: ( Vig— ;i,—l ) will be correlated (uit —u; )

Mr U_KHOA TOAN KINH TE 6/6/2022



(yit _;i) =71 Vi — ;i,—l TU, kl,ﬂ

—_—
depen on past value of u,, depen on past value of u;,

The within estimator or fix effects estimator 1s

>3 (3, -7 (3 -

Vi)

VaN

Vipp = —
IFE ii(yﬂl—yi,l)z
i=l t=
ii(yzt—l_;i,q)(uit ;z)
=y, + i=1_t

Problem: Fixed effects the within transformation and LSDYV produce

biased estimates



T

" ZN: (m - )(u,-t—ﬁl-)/NT n

_ i=1 =1
VirE=0"T

N T
S (V=) INT
=1 t=1
Theorem. (Weak law of large numbers, Khinchine)
If {X. } for1=1,..., m is a sequence of 1.1.d random variables with E(X. )

= 1 < oo, then the sample mean coverges in probability to p:

—ZX X,)=u< plim— ZX E(X,)=u

m—>+o M ;4



We have

.1 & — —
I;Eg}ﬁzg(%zl — Vi )(”iz _ui)
1 N T
pim 55 i LSS
N, ’ N, ’
—phm—ZZyl 1“1z+th—ZZJ’z 1ul
N—>+ooNTllt1 N—+00 i=1 t=1
N, N,
N, = pllm—ZZJ/n Uy = L\ Vi 1”:1) =0
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g&gﬁZZn i = gggﬁzulz Y, o

i=l t=1 t=l1

_phm—Zu Ty, » phmiﬁ:;';m

Not+o NT = N >0 N
N = plim e 3 3= plim ltzlluw_lgfj}jyzy,
N, = lifi?ﬁ;;y ﬁfﬁ.?ﬁTZf zllfz.?ﬁzy
N T B | N
plim > 5 (3, =3, ), i) = plim
N 1 N
0~ plim >y, éillf}.?ﬁz“y a+plim )y



s
=7/1—p11m—2uiyl.

2 _ 1
. l’_l) /NT N—+0 N i=1

If this plim 1s not null, then the 7A/1, - estimator 1s biased when N tends to
infinity and T 1s fixed

Fact. If T also tends to infinity, then the numerator converges to zero
Fact. The problem is more prominent in the random effects model. The
lagged dependent variable is correlated with the compound disturbance

in the model.

Yie = ViYietoy + W= Yo TV Vit oty (5.3)

=2 =2 -2 )
E(yizla;):E[%]ZO?ﬁJ"'a;% +1 y10+zyljui,tlj]ai #0
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Pre Example (3.1) With model n
ROAA = {(L.ROAA, HHI, L A, SIZE, ASSET GRO, GDP, INF)

T &
5.3 Instrumental Variable Estimation
5.3.1 Define the endogeneity bias and the smearing effect.

Consider the (population) multiple linear regression model

y=Xp +¢

y 1s a Nx1 vector of observation for Yi > 1=1,....,N

X 1s a NxK matrix of K explicative variables Xk for k=1,....K and
1=1,....N
B=(B, B, ... Bx) is a Kx1 vector of parameters

g is a Nx1 vector of error terms g, with V (&/X) =021



Endogeneity we assume that the assumption Al (exogeneity) 1s vnl
E (¢/X) #0
With
plim%X'e = E(xjgj) =y #0,,
Theorem (Bias of the OLS estimator) If the regressors are
endogenous, 1.e. E (¢/X) 6= 0, the OLS estimator of 3 1s biased
E(Bos | X)# B
where B denotes the true value of the parameters. This bias is called the
endogeneity bias.

Theorem (Inconsistency of the OLS estimator) If the regressors are

endogenous with plim N-1X'g =y the OLS estimator of [ is inconsistent



P limIBOLS =p+ Q_17
where O =plimN™'X X
Proof: Given the definition of the OLS estimator

Bos =(X'X) X'y=(X'X) X' (XB+¢)
=B+(X'X) (X'¢)

We have

imf,, . =B+ 1im(iX'le x 1im(iX'gj
P OLS P N P N
=B+Q y=p
Notes.

- The implication 1s that even though only one of the variables in X 1s
correlated with €, all of the elements ﬁOLS of are inconsistent, not

just the estimator of the coefficient on the endogenous variable



Notes (cont.).

- This effects 1s called smearing effect: the inconsistency duem‘e
endogeneity of the one variable 1s smeared across all of the least
squares estimators

5.3.2 Instrustment variable

Definition. Consider a set of H variables z, € RN for h =1, ..N. Denote Z

the NxH matrix (z, ... zy ). These variables are called instruments or

instrumental variables 1f they satisfy two properties:

(1) Exogeneity: They are uncorrelated with the disturbance.

E(e/Z)= Oy,
(2) Relevance: They are correlated with the independent variables, X

E(x;z;,) #0 forh € {1, .., H} and k € {1, .. K}.



Assumptions: The instrumental variables satisfy the fong

properties.
Well behaved data:

plimN-'Z°7Z=Q,, a finite HXH positive definite matrix
Relevance:

plimN-'Z°X=Q, a finite HXK positive definite matrix
Exogeneity:

plimN-1Z’e=0,,
Definition (Instrument properties)
We assume that the H instruments are linearly independent
E(Z’°Z) 1s non singular

Or equivalently rank (E(Z°’Z)= H



(1) Exogeneity: They are uncorrelated with the disturbance.
E(g/z)= Oy = E (g)=0

can expressed as an orthogonality condition or moment condition
E| z. (y,-x.B)|= 0
LH{U( "y’ )J )

So, we have H equations and K unknown parameters
Definition (Identification). The system 1s identified if there exists a

unique vector 3 such that:
E| z. (y.—x.B8)|= 0
[Ufﬁ)( "y )] D

where z = (z;,..zy; ) . For that, we have the following conditions:



(1) If H < K the model 1s not 1dentifed.
(2) If H=K the model 1s just-identifed.
(3) If H > K the model 1s over-identifed.

Number of instrustments H



5.3.3 Motivation of the IV estimator

By definition of the instruments:
1 1

plimﬁZ'f; = plimﬁZ'(y—X,B) =0,
so we have
plimiZ'y =(plimLZ'Xj,B

N N

or equivalently

1 - 1
=| pllm—Z'X Iim—Z"
54 (p N j plim-—2%y

If H = K, the Instrumental Variable (IV) estimator ,/6\’ ., of parameters 3 1s
defined as to be:

1

I/B\IV :(Z'X)_ Z'y



Proof
Bo=(2'X)'2'y=(2'x) Z'(XB+e)=p+(2'X) (2'¢)

E(B,V) - ﬂ+(%z')(jl (%Z'ej

so we have

N N

Under the assumption of exogeneity of the instruments

N .,
phmﬁZ 8:phmﬁZ (y—X,B):Om
so we have

-1
plimp,, =ﬂ+(plimiz')(j (phmiz'gj

plimp,, =4



5.3.4 Instrumental Variable Estimation

seE !y

Consider a dynamic panel data model with random individual effects

The Instrumental Variable (IV) approach was first propo
Anderson and Hsiao (1982).

— b *
Yie = Vier T B Xie + 04 U
- o, is assumed to be random
- X, 1s a vector of K, time-varying explanatory variables,

- P 1s a vector of K, vector of parameters for the time-varying

explanatory variables



5.3.4 Instrumental Variable Estimation (cont.) m

— bJ *
Yie = VWit Bl T oy + 0y,
Assumption. We assume that the component error term €= o.” +u.,
Remark. If the vector o.” includes a constant term, the associated

parameter can be interpreted as the mean of the (random) individual

effects
o =a,ta ;E()=0

About «.,

1

E(u,)=0, ,V(uit)zE(u.z)zcs2 ,E(u.u. )=O for 1#j and t#s

1t s
E(ociuit) =0
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5.3.4 Instrumental Variable Estimation (cont.) m

Yie = VWit BXy T o u
Step 1. first difference transformation
Step 2. choice of the instrutments and I'V estimation of y and 3
Step 3. estimation of

Step 4. estimation of the variances 62, and 62,

kKoK

Step 1. first difference transformation

Taking the first difference of the model, we obtain for t =2, .., T.
Yie = VWiert B + 057 g

Yier = Vieo T BliKier T 07+ Uy

Vit - Vi)™ YVt = Vi) T B (X — Xieo ) T U — iy (5.4)



- The first difference transformation leads to "lost" one observati
- But, i1t allows to eliminate the individual effects (as the %n
transformation).
Step 2. choice of the instrutments and IV estimation
Vit = Yie )= YVier = Yien) T B (Xig = Xy ) + 0y — Uy
Remark. In the difference equation, however, the errors (u, — u,_,) are
correlated with the regressor (y._; — y..»).
Therefore, a valid instrument z, should satisfy
E(z, (v, —u,_,)) =0, exogeneity property.
E(Z, (Vies — Yir2)# 0 , relevance property.
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Eq. (5.4) simply that no have exogeneous the following way:

Vit = Vie )= Y (Vi1 — Yit-Z)M—i_ Ui — Ui

Anderson and Hsiao (1981) propose two valid instruments:

* First instrustment: z;, =y, ,

E(y;., (uy, —u;,)) =0, exogeneity property.

E(yi» (Vi1 — Yi))# O, relevance property.

* Second instrustment: z;, =y, ;- y; 3

E((Yi2 - Vies) (U —Uy-y)) =0, exogeneity property.
B((¥i02- Yies) (Vier — Vi 2)# 0, relevance property.
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gyit o yit—lz — 7/gyit—1 _ yit—Zz _H:tit _ uit—lj

-
Ay, Ay Auy,

& A, =AY, +Auy, (5.5)

In Eq. (5.5) the errors Au,, are correlated with Ay, ,
Therefore,
E(Ayj., Auy ) # 0
Stacking over time, Eq. (5.5) reduces to
Ay, =yAy, ,+Au; (5.6)
Anderson and Hsiao (1981) recommend instrustmenting for Ay, , with z,,
= ¥i42 O Vit~ ¥Yirs Which are uncorrelated with the disturbance in (5.5)

but correlated with Ay, ;.
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The instrumental variable estimation exploits the following rﬂa
condition:
E(y’; » Au; ) =0(5.7)
The sample counterpart of (5. 7) 1S
E(y, ,Au,)= Zy (Ayl- — YAy, )= 0 (5.8)
Therefore, using y;, ,, or y, , as an instrument for Yie1> OF Y, the IV

estimator 1s

il A
2 Vi (Ayi - VA)/,-,_l) =0
i=l1

Iy
<:>7/11V [Z)’zszZ 1] Zyi,—ZAyi = (5.9)
i=1
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Now, Eq. (5.8) could be expressed as

Iy
7/111/ [Z)’ LAY, 1) Zyz YAy, = 7/+(Zyz2Ayz j Zy;,—2Aui
i—1

Substituting y,_, 7/02 7! +a. Z v+ Ty, + ZQ/{ Ui\ o
We have a =

t (?w) =Y
In general,

Vit = Vi)™ YVier = Vieo) T B (X — X ) U0y — Uy

(yzt Vit— 1) 7/(yzt 1= Vi 22 +ﬂ’gxit o xit—l) +I\/lit o uit—lj

-
Ay it Ay jt—1 Ax;, Auy,

< Ay, =yAy, + 3 Ax, +Au, (5.10) ¢=2,3,...,T
Vie =V Vi +ﬂ,xit TUu, (t1=1)
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Notes.

- The mitial first differences model includes K, + 1 regressors.
- The regressor y..; — y;._, 1s endogeneous.

- The regressor x,, — x,._; are assumed to be exogeneous.
Anderson and Hsiao (1982) propose two valid instruments:
First instrustment :z, = ( Vs (xl.t - X, ) )

Ay, =yAy,  + B Ax, +Au, (5.10)

/Ayﬂ\ ( Ay, Ax'z\ ( Yio Axil\

l

~
[l
S
[

N
[l

\Ay iT ) \Ay o Ay y \JVir—2 Ax;; )



Second instrustment : zZ, = ((y,-,_z — yit—3) (xit — X ) )

/Aylg\ ( Ayiz A)CB\ ( Vi~ Vio A)61'3\

-
Il

1 l

X, = C iZ =

\AyiT Y, \AyiT—1 AxiT Y, \Vir-2 ~ Virs AxiT J
Ay, = Ay, + B Ax, +Au,  (5.10)
<Y =0X, +Au, (5.11)
/YI 3\ /Xl 3\ /ZI A

\YN/ \XN) \ZN/
Y=0X+Au (5.12)



First instrustment : z, = ( Vi (X — X 1) )

it

Sw=(2'X)"'ZY

Mr U_KHOA TOAN KINH TE 6/6/2022



Remarks.

- The first estimator (with z, =y, , ) has an advantage over the second
one (with z; =y, _, —¥;.3) In that the minimum number of time periods
required 1s two, whereas the first one requires T > 3.

- In practice, if T = 3, the choice between both depends on the
correlations between (y; | —¥;.3) and y; ., or (¥; 2 ~Viw3)

Pre Example (3.1) With model

ROAA = {(L.ROAA, HHI, L A, SIZE, ASSET GRO, GDP, INF)

+ g

Mr U_KHOA TOAN KINH TE 6/6/2022



